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The Model

I We consider the Hamiltonian: H = −
∑
〈ij〉

~Si · ~Sj .
I Here ~S is a three-component vector, and 〈ij〉 is a sum over

nearest-neighbor pairs in two dimensions.

I The partition function is Z(β) =
∑
{~S} e

−βH .

I The sum is over spin configurations on a two-dimensional
lattice.



Important aspects of the study

I non-Abelian model to test tensor renormalization

I 〈~S〉 = 0 for all β

I This model is known to be asymptotically free for large β.

I For Monte Carlo calculations, this model has no sign problem.

I In this tensor formulation, some tensor elements are negative

I Blocking methods like Tensor Renormalization appear
insensitive to this attribute.

I Other expansion methods avoid this sign problem.

Denbleyker et al. Phys. Rev. D 89, 016008
Wolff, Nuc. Phys. B 824, 254



Tensor renormalization

I Proposed by Levin & Nave in ’07

I Techniques used here similar to Xie et al. ’12

I the Higher Order SVD Tensor Renormalization Group

I Built out of tensor building blocks

Levin & Nave Phys. Rev. Lett. 99, 120601
Xie et al. Phys. Rev. B 86, 045139



Coarse-graining and Blocking

1. Form initial tensor

2. Decide what to keep

3. Can’t keep all the information =⇒ project what matters

1. 2. 3.



Tensor Formulation for O(3)

I A simple approach is through Harmonic analysis.

I O(3) has two quantum numbers, however the expansion
coefficients only depend on one, l.

I

exp[β cos γij ]→
∑
l

Al(β)Pl(cos γij)

I Now

Pl(cos γij) =
4π

2l + 1

∑
m

Ylm(θi, φi)Y
∗
lm(θj , φj)

I With the angular dependence decoupled, angular integration
can now take place.



Tensor Formulation Cont.
The relative size of the coefficients for various l values.
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The O(3) Tensor

I The Spherical Harmonics are associated with pairs of sites, or
links.

I Since there are four impinging links per site on the lattice, the
angular integration site-wise is∫

dΩ Y ∗lmY
∗
l′m′Yl′′m′′Yl′′′m′′′ .

I The constraint from this is

≈
l+l′∑

L=|l−l′|

L∑
M=−L

CLMlml′m′CL0l0l′0C
LM
l′′m′′l′′′m′′′CL0l′′0l′′′0.



The O(3) Tensor Cont.

I This constraint enforces the triangle in-equalities. The
intermediate sum over L and M picks out irreducible
representations of the angular momenta.

l1m1

l2m2

l3m3

l4m4

∑
L,M

I Contrast with the Abelian case



Tensor view of the lattice

∑

I The tensor formulation allows one to decouple the lattice at
the location of the local constraint.

I The lattice is rebuilt by piecing these tensors together
geometrically.



n-point Correlations

I n-point correlations can be realized on the lattice by inserting
spin vectors at particular sites.

I These lead to a modified constraint at each site of insertion.

I For O(3), we find an angular integral of the form∫
dΩ Yl1m1Yl2m2Y

∗
l3m3

Y ∗l4m4
Y1m.

I This leads to a tensor whose elements are shifted, or an
“impure” tensor.



n-point Correlations Cont.

impure tensor

I Average values are computed by contracting impure tensors
with pure.

I Same algorithmics



Results

I Monte Carlo comparison

I Infinite volume thermodynamics

I 2-point correlation data/comparison



Results Cont.
Monte Carlo comparison: average energy on 32× 32 lattice
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Results Cont.
Infinite volume thermodynamics: energy on 220 × 220 lattice
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Results Cont.
Infinite volume thermodynamics: entropy on 220 × 220 lattice
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Results Cont.
2-point correlation data & comparison on 128× 128 lattice
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Results Cont.
2-point correlation data convergence on 128× 128 lattice
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Tensor Renormalization cost/benefit

Benefits:

I Appears insensitive to sign problems

I Infinite volume is as easy as finite volume

I Good qualitative & quantitative results on PCs

I Graphical interface

I Can be formulated for many popular models

Liu et al. Phys. Rev. D 88, 056005
Cost:

I Memory scales like D2d

I Computation time scales like D4d−1!

I D is the number of states, and d is the spacetime dimension



Conclusion and Future Work

I Tensor renormalization is a powerful method in 2D.

I Uncover more efficient serial algorithms for tensor
renormalization

I Understand phase structures and models through SVD and
eigenvalue patterns

I Parallelization of tensor contractions could help the D7

scaling.

I Higher dimensions, if the above can be realized

Thank you!


